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We extended the direct quantum approach of the standard FRW cosmology from 4D
to 5D and obtained a Hamiltonian formulation for a wave-like 5D FRW cosmology.
Using a late-time approximation we isolated ay-part from the full wave function of
the 5D Universe. Then we found that the compactness of the fifth dimensiony yields
a quantized spectrum for the momentumP5 along the fifth dimension, and we have
shown that the whole space-part of the wave function of the 5D Universe satisfies a 2D
Schrödinger equation.
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1. INTRODUCTION

Quantum cosmology has received extensive studies (Novelloet al., 1995;
Wheeleret al., 1964). Recently, a direct quantum approach was used to derive
Hamiltonian formulation of the standard Friedmann–Robertson–Walker (FRW)
cosmological models (Elbazet al., 1997; Novelloet al., 1996). The method is based
on assumptions of validity of the classical FRW equations and a transformation
from a pair of physical variables (ρ , θ ) (the density of matter and the inverse of
the Hubble radius), which describe the dynamics of a spatially homogeneous and
isotropic perfect fluid, to another pair of canonical variables (q, p) (roughly the
radius of the Universe and its rate of change). In this way, a canonical description
of quantum FRW cosmology was obtained. In this paper, we have extended this
procedure to a 5D FRW cosmology and have discussed the quantum effects of the
fifth compact dimension on the wave function of the Universe.

The arrangement of this paper is as follows. In Section 2, we study a class of
5D wave-like cosmological solutions and derive Hamiltonian formulation of the
5D FRW cosmology. In Section 3, we use a late-time approximation to separate
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the 5D wave function of the Universe and isolate out the part of the fifth dimension.
In Section 4, we study quantization of the wave function due to the compactness
of the fifth dimension. Section 5 is a conclusion.

2. HAMILTONIAN FORMULATION OF 5D COSMOLOGY

We consider a FRW type 5D metric

dS2 = −B2(t, y) dt2+ A2(t, y)

(
dr2

1− kr2 + r 2dÄ2

)
+ C2(t, y) dy2, (2.1)

wheredÄ2 ≡ dθ2+ sin2 θ dϕ2 and the coordinatesxA = (t, r θϕ, y) (here and
throughout this paper, lowercase Greek letters run 0, 123 and uppercase Latin
letters run 0, 123, 5). Using the 4D part of the 5D metric (2.1) we can calculate
all the nonvanishing components of the 4D Einstein tensor(4)Gαβ , which are as
follows:

(4)G0
0 = 3

Ȧ
2

A2B2
+ 3k

A2
, (2.2)

(4)G1
1 = (4)G2

2 = (4)G3
3 = −2

Ä

AB2
− Ȧ

2

A2B2
− k

A2
+ 2

ȦḂ

AB3
. (2.3)

where a dot denotes partial derivative with respect to timet .
It is known that solutions which are empty in 5D may have matter in 4D

(Overduin and Wesson, 1997; Wesson, 1999). Therefore, one can define an induced
4D energy-momentum tensorTαβ as

Tαβ ≡ (4)Gαβ. (2.4)

It is found that thisTαβ can take the form of a perfect fluid,

Tαβ = (ρ + P)uαuβ + Pgαβ , (2.5)

whereρ and P are the energy density and the pressure of the induced matter,
respectively.

Now we let the equation of state be

P = γρ , (2.6)

whereγ = 0 andγ = 1/3 represent matter-dominated and radiation-dominated
eras, respectively. Then substituting (2.2), (2.3), (2.5), and (2.6) in (2.4), we obtain
the well-known Friedmann equation

3
Ȧ

2

A2
= B2ρ − 3kB2

A2
, (2.7)
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and the Raychaudhuri equation

3
Ä

A
− 3

ȦḂ

AB
+ B2

2
(1+ 3γ )ρ = 0. (2.8)

The conservation law for the energy-momentumTαβ gives us another equation

ρ̇ + 3(1+ γ )
Ȧ

A
ρ = 0. (2.9)

An exact 5D cosmological solution satisfying the empty 5D equationsRAB =
0 is (Liu and Wesson, 1994)

dS2 = −B2(u) dt2+ A2(u)(dr2+ r 2dÄ2)+ B2(u) dy2, (2.10)

wherek is chosen to be zero,

A(u) = (hu)
1

2+3γ ,

B(u) = (hu)−
1+3γ

2(2+3γ ) , (2.11)

andu ≡ t − y. The energy densityρ and pressureP are

ρ = 3h2

(2+ 3γ )2
A−3(1+γ ), P = γρ. (2.12)

This is a wave-like cosmological solution which can be interpreted as a shock wave
propagating along the fifth dimension (Wessonet al., 2000).

Now let us return to Eqs. (2.7)–(2.9). There are three basic equations from
which we want to derive the Hamiltonian formulation. Note that sinceA =
A(u) and u = t − y, we have Ȧ = ∂A/∂t = d A/du. Therefore, by using a
transformation

ũ =
∫

B(u) du, (2.13)

we can reduce Eqs. (2.7)–(2.9) to

3
∗
A2

A2
= ρ , (2.14)

3
∗∗
A

A
+ 1+ 3γ

2
ρ = 0, (2.15)

∗
ρ + 3(1+ γ )

∗
A

A
ρ = 0, (2.16)

where an asterisk denotes derivative with respect toũ. These three Eqs. (2.14)–
(2.16) are of the same forms as in the standard 4D FRW solutions algebraically.
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Therefore, we can follow the procedure given by Elbazet al. (1997; see also
Novelloet al., 1996) to derive the canonical formulation of the cosmology.

First, we introduce an expansion parameter2,2 ≡ 3 A*

A , which brings (2.14)–
(2.16) to

1

3
22 = ρ , (2.17)

∗
2+ 1

3
22+ 1

2
(1+ 3γ )ρ = 0, (2.18)

∗
ρ + (1+ γ )ρ2 = 0. (2.19)

Then we choose a new set of canonical variables (q, p) with

q = bρ−1/(3+3γ ),

p = 1

3
b2ρ−1/(3+3γ ), (2.20)

whereb is an arbitrary constant. In this way, we arrive at the following Hamiltonian

H(q, p) = 1

2
p2− 1

6
b3(1+γ )q−(1+3γ ). (2.21)

This Hamiltonian describes a particle with momentump in a potentialV(q) =
− 1

6b3(1+γ )q−(1+3γ ). Using relations (2.17)–(2.21) we can verify that the two
Hamilton equations

∗
q = ∂H/∂p and

∗
p = −∂H/∂q hold. Note that here the time

coordinate is nott but ũ, that is,
∗
q ≡ dq/dũ and

∗
p ≡ dp/dũ. This will make a

difference between the two canonical formulations of the 4D and 5D cosmologies
as shown in the next section.

3. WAVE FUNCTION AND LATE-TIME APPROXIMATION

From the Hamiltonian (2.21) we can employ the standard quantization proce-
dure to write the corresponding Schr¨odinger equation. Because the time coordinate
in the Hamiltonian formulation is̃u, so the time-dependent wave function is of the
form

9(q, ũ) = e−i Ēũϕ(q). (3.1)

The correspondence principlep→−i ∂
∂q gives a stationary Schr¨odinger equation

for the stationary wave functionϕ(q) as

1

2

∂2

∂q2
ϕ(q)+

[
Ẽ + 1

6
b3(1+γ )q−(1+3γ )

]
ϕ(q) = 0. (3.2)
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In (3.1) and (3.2) Ẽ is the associated eigenvalue of the operatorĤ, Ẽ =
〈9(q, ũ)|Ĥ|9(q, ũ)〉. Quantized bound states with negativeẼ of the Schr¨odinger
Eq. (3.2) were studied by Novelloet al. (1996) and Mongan (1999, 2000, 2001).
Their results can also be used here.

Sinceũ is not the proper time of the cosmic fluid, we are not sure if we can
interpretẼ as the energy. Therefore, we look for the relation betweenũ and the
proper time. Now let us consider the 5D metric (2.10), from which we see that the
2D line-element in thet − y plane can be written as

ds2 = −B2(u) du d(t + y). (3.3)

Thus by defining

U ≡
∫

B2(u) du, V ≡ (t + y). (3.4)

we getds2 = −dU dV. Then let

U ≡ T − λY, V ≡ T + λY, (3.5)

whereλ is a constant to be determined later, we getds2 = −dT2+ λ2 dY2. There-
fore we find thatT is the proper time. Substituting (2.11) in (2.13) and (3.4),
we find

hũ = 2(2+ 3γ )

3(1+ γ )
(hu)

3(1+γ )
2(2+3γ ) , (3.6)

hU = (2+ 3γ )(hu)
1

2+3γ . (3.7)

From these two equations we obtain

ũ = WγU
3(1+γ )

2 = Wγ (T − λY)
3(1+γ )

2 , (3.8)

where

Wγ ≡ 2

3(1+ γ )

(
h

2+ 3λ

) 1+3γ
2

. (3.9)

Now let us consider a short period in a later time of the Universe. This means
that we chooseT = 0 as the beginning of the Universe (on theY = 0 hypersurface)
and writeT = T0+ τ with |τ | ¿ T0. Then (3.8) gives

ũ = Wγ T
3(1+γ )

2
0

(
1+ τ − λY

T0

) 3(1+γ )
2

≈ Wγ T
3(1+γ )

2
0 + 3(1+ γ )

2
T

1+3γ
2

0 (τ − λY). (3.10)
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Using this relation we find that, up to a constant factor, the wave function9(q, ũ)
in (3.1) becomes

9(q, Y, τ ) ≈ e−i Eτ ei P5Yϕ(q). (3.11)

where

E ≡ χ Ẽ,

P5 ≡ χ Ẽλ, (3.12)

and

χ = 3(1+ γ )Wγ

2
T (1+3γ )/2

0 =
(

hT0

2+ 3γ

) 1+3γ
2

. (3.13)

Thus we have successfully obtained an approximate wave function9(q, Y, τ ) as
shown in (3.11), in which the three variablesτ, q, andY were separated.

4. QUANTIZATION WITH A COMPACT FIFTH DIMENSION

The wave function9(q, Y, τ ) in (3.11) is in a form with three separated
variablesτ, q, andY. Denote theY-part of9 as8(Y),8(Y) = ei P5Y, then the
momentum operator̂P5 = −i ∂

∂Y gives

P̂58 = P58. (4.1)

So P5 is the eigenvalue of the momentum along the fifth dimension.
Now we suppose the fifth dimension to be a circle with a radiusR; i.e.,

Y = Rφ. So we have8 = 8(φ) = ei P5Rφ . The boundary condition requires that
8(φ) must be periodic with period 2π . It follows that we must have

P5 = n

R
, n = 0,±1,±2, . . . . (4.2)

In this way, the fifth momentumP5 and the corresponding wave function8(φ) are
quantized.

The momentum operator̂P5 = −i ∂
∂Y , acting on Eq. (4.1) from the left hand

side, gives

1

2

∂2

∂Y2
8(Y)+ n2

2R2
8(Y) = 0. (4.3)

Letψ(q, Y) ≡ ϕ(q)8(Y), then Eqs. (3.2) and (4.3) give

1

2

(
∂2

∂q2
+ ∂2

∂Y2

)
ψ(q, Y)+

(
Ẽ + n2

2R2
+ 1

6
b3(1+γ )q−(1+3γ )

)
ψ(q, Y) = 0.

(4.4)
So we obtain a stationary 2D Schr¨odinger equation.
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5. CONCLUSION

In this paper we have obtained a Hamiltonian formulation for a 5D cosmology.
This Hamiltonian leads immediately to a stationary 1D Schr¨odinger Eq. (3.2).
Thus the corresponding full wave function can describe quantized states of a 5D
Universe. By using a late-time approximation we have successfully separated the
wave function into three parts,9(q, Y, τ ) ≈ e−i Eτ ei P5Yϕ(q), corresponding to
the proper timeτ , the variableq (which describes the radius of the Universe), and
the fifth coordinateY, respectively. Notice that this wave function just valid in
a later time of the Universe with|τ | ¿ T0, whereT0 is the age of the Universe
at that time. Then by assuming the compact fifth dimension to be a circle, we
obtain a quantized spectrum for the momentumP5 in the fifth direction. Note that
theq-part of the wave function,ϕ(q), satisfies the 1D Schr¨odinger Eq. (3.2), for
which bound states were given (Novelloet al., 1996). Using their results, as well
as the spectrum forP5, we can obtain bound states for the whole space-part of the
wave function,9(q, Y) = ei P5Yϕ(q), which satisfies the 2D Schr¨odinger Eq. (4.4).
Further studies are needed on this.
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