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Quantum Effects of an Extra Compact Dimension
on the Wave Function of the Universe
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We extended the direct quantum approach of the standard FRW cosmology from 4D
to 5D and obtained a Hamiltonian formulation for a wave-like 5D FRW cosmology.
Using a late-time approximation we isolated/goart from the full wave function of

the 5D Universe. Then we found that the compactness of the fifth dimegsi@ids

a quantized spectrum for the momentux along the fifth dimension, and we have
shown that the whole space-part of the wave function of the 5D Universe satisfies a 2D
Schiodinger equation.
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1. INTRODUCTION

Quantum cosmology has received extensive studies (Noeélid., 1995;
Wheeleret al, 1964). Recently, a direct quantum approach was used to derive
Hamiltonian formulation of the standard Friedmann—Robertson—Walker (FRW)
cosmological models (Elbat al., 1997; Novellcet al,, 1996). The method is based
on assumptions of validity of the classical FRW equations and a transformation
from a pair of physical variables(6) (the density of matter and the inverse of
the Hubble radius), which describe the dynamics of a spatially homogeneous and
isotropic perfect fluid, to another pair of canonical variablgsp) (roughly the
radius of the Universe and its rate of change). In this way, a canonical description
of quantum FRW cosmology was obtained. In this paper, we have extended this
procedure to a 5D FRW cosmology and have discussed the quantum effects of the
fifth compact dimension on the wave function of the Universe.

The arrangement of this paper is as follows. In Section 2, we study a class of
5D wave-like cosmological solutions and derive Hamiltonian formulation of the
5D FRW cosmology. In Section 3, we use a late-time approximation to separate
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the 5D wave function of the Universe and isolate out the part of the fifth dimension.
In Section 4, we study quantization of the wave function due to the compactness
of the fifth dimension. Section 5 is a conclusion.

2. HAMILTONIAN FORMULATION OF 5D COSMOLOGY
We consider a FRW type 5D metric

dr?

1—kr?

dS = —B2(t, y) d® + A%(t, y) ( + r2d92) +C(t,y)dy?,  (2.1)

whered? = d62 + sirf 6 de? and the coordinates” = (t, r6¢, y) (here and
throughout this paper, lowercase Greek letters run 0, 123 and uppercase Latin
letters run 0, 123, 5). Using the 4D part of the 5D metric (2.1) we can calculate
all the nonvanishing components of the 4D Einstein ten‘fé@ra,s, which are as

follows:

"2

A 3k

INTE + ¥l (2.2)

WG =3

A k AB
Wl W2 W3- o =+ * _ i
G; =G5 ="G; = 2A82 B2 A2 +2AB3' (2.3)
where a dot denotes partial derivative with respect to time
It is known that solutions which are empty in 5D may have matter in 4D
(Overduin and Wesson, 1997; Wesson, 1999). Therefore, one can define aninduced
4D energy-momentum tensgg as

Tus = DGyp. (2.4)
It is found that thisT,z can take the form of a perfect fluid,

Top = (0 + P)UaUs + PGy, (2.5)
wherep and P are the energy density and the pressure of the induced matter,
respectively.

Now we let the equation of state be
P =yp, (2.6)

wherey = 0 andy = 1/3 represent matter-dominated and radiation-dominated
eras, respectively. Then substituting (2.2), (2.3), (2.5), and (2.6) in (2.4), we obtain
the well-known Friedmann equation

2
_ 3k_B (2.7)
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and the Raychaudhuri equation

A _AB B2
31" (1 =0. 2.
3 3 g T A+ =0 (2.8)

The conservation law for the energy-momentliga gives us another equation

p+3(1+ )/)%,0 =0. (2.9)
An exact 5D cosmological solution satisfying the empty 5D equatiRyis=
0 is (Liu and Wesson, 1994)
d S = —B2(u) df? + A%(u)(dr? + r2dQ?) + B2(u) dy?, (2.10)
wherek is chosen to be zero,
Au) = (hy)7s,
B(U) = (hu) 25, (2.11)
andu =t — y. The energy density and pressur® are
_ 3n? A30+y)
(2+ 3y)? ’

This is a wave-like cosmological solution which can be interpreted as a shock wave
propagating along the fifth dimension (Wessdral., 2000).

Now let us return to Egs. (2.7)—(2.9). There are three basic equations from
which we want to derive the Hamiltonian formulation. Note that sirce-
Au) andu=t -y, we have A= 09dA/ot = dA/du. Therefore, by using a
transformation

o P=yp. (2.12)

0= / B(u) du, (2.13)
we can reduce Egs. (2.7)-(2.9) to
3A2

=0, (2.14)

3A 1+3y
°A =0, 2.15
A 5 P (2.15)

\ A
o+ 3(1+ )/)Kp =0, (2.16)

where an asterisk denotes derivative with respeét. tbhese three Egs. (2.14)—
(2.16) are of the same forms as in the standard 4D FRW solutions algebraically.
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Therefore, we can follow the procedure given by Elledzal. (1997; see also
Novelloet al, 1996) to derive the canonical formulatiop of the cosmology.

First, we introduce an expansion paraméie® = 34, which brings (2.14)—
(2.16) to

1
0% =p, (2.17)
3
« 1 5,1
O+ §® +§(1+3y)p =0, (2.18)
p+ @1+ y)p® =0. (2.19)
Then we choose a new set of canonical variabie) with
q = bp~Y/E+3),
1
p= éb@/fl/<3+3ﬂ, (2.20)
wherebis an arbitrary constant. In this way, we arrive at the following Hamiltonian
M@ P) = Sp? — p¥g-(+3) (2.21)
’ 2 6 ' '

This Hamiltonian describes a particle with momentpnin a potentialV (q) =

— 23+ q=(1+3), Using relations (2.17)—(2.21) we can verify that the two
Hamilton equationg) = 3/dp and p = —3H/dq hold. Note that here the time
coordinate is not but i, that is,§ = dg/dii and p = dp/dii. This will make a
difference between the two canonical formulations of the 4D and 5D cosmologies
as shown in the next section.

3. WAVE FUNCTION AND LATE-TIME APPROXIMATION

From the Hamiltonian (2.21) we can employ the standard quantization proce-
dure to write the corresponding Soldiiiger equation. Because the time coordinate
in the Hamiltonian formulation id, so the time-dependent wave function is of the
form

Y(g, 0) = & Fp(q). (3.1)
The correspondence principte— —i % gives a stationary Schdinger equation
for the stationary wave functiop(q) as

192 ~ 1
33 @+ | E+ gpa )| yiq) —o 32)
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In (3.1) and (3.2)E is the associated eigenvalue of the operatrE =
(W(q, 0)|H|¥(q, &)). Quantized bound states with negativef the Schodinger
Eqg. (3.2) were studied by Novelkt al. (1996) and Mongan (1999, 2000, 2001).
Their results can also be used here.

Sinced is not the proper time of the cosmic fluid, we are not sure if we can
interpretE as the energy. Therefore, we look for the relation betwieand the
proper time. Now let us consider the 5D metric (2.10), from which we see that the
2D line-element in thé — y plane can be written as

ds® = —B?(u) du d(t + y). (3.3)
Thus by defining

U E/BZ(u) du,  V=(t+y). (3.4)

we getds’ = —dU dV. Then let
U=T-1Y, V=T+4rY, (3.5)

wherel is a constant to be determined later, wedg@t= —d T2 + A2 dY2. There-
fore we find thatT is the proper time. Substituting (2.11) in (2.13) and (3.4),
we find

22+ 3y) 3(1+y)
= =" (hu)ze=n, 3.6
3(1+y) (hu) (3.6)

hU = (2+ 3y)(hu)7%. (3.7)

hil =

From these two equations we obtain
3(1+y) 3(1+y)

0=W,U"" =W, (T —1v)*2", (3.8)

where

143y
2

2 h
Wy, = 31+ y)<2+3x> ' (3.9)

Now let us consider a short period in a later time of the Universe. This means
thatwe choos& = 0 as the beginning of the Universe (on the= 0 hypersurface)
and writeT = T + = with |t| < To. Then (3.8) gives

3(+y)

N 30ty T—AY)\ 2
i=W,T,? (1+ T
0

sy 3(1 L3y
AW T, %TO ¥ (r — ). (3.10)
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Using this relation we find that, up to a constant factor, the wave funatigp )
in (3.1) becomes

v(q,Y, )~ e BT dPYy(q). (3.11)
where
E=y E,
Ps = xEx, (3.12)
and

1+3y
3(1+ )W, p (302 _ hTo 1\~

2 2+ 3y '
Thus we have successfully obtained an approximate wave fun&tigny, ) as
shown in (3.11), in which the three variablesy, andY were separated.

X = (3.13)

4. QUANTIZATION WITH A COMPACT FIFTH DIMENSION

The wave function¥(q, Y, ) in (3.11) is in a form with three separated
variablesr, g, andY. Denote theY part of W as ®(Y), ®(Y) = €P=Y, then the
momentum operatdPs = — aY gives

Psd = Pd. 4.1)

So Ps is the eigenvalue of the momentum along the fifth dimension.

Now we suppose the fifth dimension to be a circle with a rads.e.,
Y = R¢. So we haveb = &(¢) = PR, The boundary condition requires that
®(¢) must be periodic with period2 It follows that we must have

n
P5=§, n=0,+1,+2,.... 4.2)
In this way, the fifth momentur®s and the corresponding wave functide) are
quantized. A
The momentum operatd?s = —
side, gives

aY, acting on Eq. (4.1) from the left hand

2 n2
53y P + 55 O(Y) = (4.3)

Lety(q,Y) = ¢(q)®(Y), then Egs. (3.2) and (4.3) give

1/ 92 92 n? 1
> (8q2 aYZ)xp(q Y)+ < oRZ + 6b3(1+y)q(1+3y))1/,(q, Y)=0
(4.4)

So we obtain a stationary 2D Sdilifger equation.
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5. CONCLUSION

Inthis paper we have obtained a Hamiltonian formulation for a 5D cosmology.
This Hamiltonian leads immediately to a stationary 1D &dimger Eq. (3.2).
Thus the corresponding full wave function can describe quantized states of a 5D
Universe. By using a late-time approximation we have successfully separated the
wave function into three partsy(q, Y, t) ~ e 'E* &PsYy(q), corresponding to
the proper timer, the variableg (which describes the radius of the Universe), and
the fifth coordinateY, respectively. Notice that this wave function just valid in
a later time of the Universe withr| <« To, whereTy is the age of the Universe
at that time. Then by assuming the compact fifth dimension to be a circle, we
obtain a quantized spectrum for the momentegin the fifth direction. Note that
the g-part of the wave functiony(q), satisfies the 1D Schdinger Eq. (3.2), for
which bound states were given (Novedibal,, 1996). Using their results, as well
as the spectrum fdPs, we can obtain bound states for the whole space-part of the
wave function¥ (g, Y) = €Y ¢(q), which satisfies the 2D Sabdinger Eq. (4.4).
Further studies are needed on this.
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